Fine-resolution satellite remote sensing improves spatially distributed snow modeling to near real time
Given the highly variable distribution of seasonal snowpacks in complex mountainous environments, the accurate snow modeling of basin-wide snow water equivalent (SWE) requires a spatially distributed approach at a sufficiently fine grid resolution (<500 m) to account for the important processes in the seasonal evolution of a snowpack (e.g., wind redistribution of snow to resolve patchy snow cover in an alpine zone). However, even well-validated snow evolution models, such as SnowModel, are prone to errors when key model inputs, such as the precipitation and wind speed and direction, are inaccurate or only available at coarse spatial resolutions. Incorporating fine-spatial-resolution remotely sensed snow-covered area (SCA) information into spatially distributed snow modeling has the potential to refine and improve fine-resolution snow water equivalent (SWE) estimates. This study developed 30 m resolution SnowModel simulations across the Big Thompson River, Fraser River, Three Lakes, and Willow Creek Basins, a total area of 4212 km2 in Colorado, for the water years 2000–2023, and evaluated the incorporation of a Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat SCA datasets into the model’s development and calibration. The SnowModel was calibrated spatially to the Landsat mean annual snow persistence (SP) and temporally to the MODIS mean basin SCA using a multi-objective calibration procedure executed using Latin hypercube sampling and a stepwise calibration process. The Landsat mean annual SP was also used to further optimize the SnowModel simulations through the development of a spatially variable precipitation correction field. The evaluations of the SnowModel simulations using the Airborne Snow Observatories’ (ASO’s) light detection and ranging (lidar)-derived SWE estimates show that the versions of the SnowModel calibrated to the remotely sensed SCA had an improved performance (mean error ranging from −28 mm to −6 mm) compared with the baseline simulations (mean error ranging from 69 mm to 86 mm), and comparable spatial patterns to those of the ASO, especially at the highest elevations. Furthermore, this study’s results highlight how a regularly updated 30 m resolution SCA could be used to further improve the calibrated SnowModel simulations to near real time (latency of 5 days or less).
Citation Information
Publication Year | 2025 |
---|---|
Title | Fine-resolution satellite remote sensing improves spatially distributed snow modeling to near real time |
DOI | 10.3390/rs17101704 |
Authors | Graham A. Sexstone, Garrett Alexander Akie, David J. Selkowitz, Theodore B. Barnhart, David M. Rey, Claudia León-Salazar, Emily Carbone, Lindsay A. Bearup |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Remote Sensing |
Index ID | 70267370 |
Record Source | USGS Publications Warehouse |
USGS Organization | Colorado Water Science Center; Wyoming-Montana Water Science Center; WMA - Observing Systems Division |