Aqueous Crystal Growth and Dissolution Kinetics of Earth Surface Materials
Although calcium carbonate reaction kinetics has important application in several areas of Earth Science, the mechanism of natural organic matter mediation of carbonate minerals growth and dissolution rates remains largely unknown. This project uses multiple approaches to study calcium carbonate formation and dissolution rates in surface water and groundwater systems.
Background

Project work on calcium carbonate reaction kinetics has important application in several areas of earth science, including water quality concerns and the global carbon budget. The mechanism of natural organic matter mediation of carbonate minerals growth and dissolution rates remains largely unknown. We use laboratory, field, and theoretical approaches to study calcium carbonate formation and dissolution rates in surface water and groundwater systems.
Important aspects of project research include characterization of the interaction of natural organic material with calcium carbonate surfaces during crystal growth and dissolution. We develop models to evaluate natural organic material influence on calcium carbonate crystal growth and dissolution kinetics. Other project activities focus on the development and verification of methods to characterize natural organic matter-metal ion speciation.
Project staff sample surface and ground water for chemical and isotopic composition related to calcium carbonate formation and dissolution. We use geochemical mass balance calculations to identify possible calcium carbonate formation and dissolution reactions in a range of surface and ground water settings. Project staff also monitor calcium carbonate crystal growth and dissolution in conjunction with tools developed for dating young groundwaters.
Our project uses techniques of low-temperature geochemistry to interpret and characterize chemical processes, such as precipitation of calcium carbonate in surface lake water (see photos below), occurring in surface water and ground water. We study metal binding by dissolved organic matter and crystal growth and dissolution reaction rate mediation by dissolved constituents because metal ion speciation and mineral formation rates influence water quality and carbon storage. Metal ion complexation with organic matter mediates metal ion reactivity in surface water and ground water -- metal ion speciation controls metal ion chemical and biogeochemical reactivity and bioavailability.
We determine equilibrium metal species distributions in surface and ground water containing organic matter, and characterize crystal growth and dissolution rates in surface and ground water containing organic material.
Project Interests
- Calcium carbonate nucleation and growth in surface and groundwater
- Calcium carbonate formation and dissolution in arid soils at the Amargosa Desert Research Site located near Beatty, Nevada.
Pyramid Lake Research






Aqueous Crystal Growth and Dissolution Kinetics of Calcium Carbonate Minerals at the Amarigosa Desert Research Site, Nevada
Below are publications associated with this project.
Calcite growth rate inhibition by low molecular weight polycarboxylate ions: Chapter 2
Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation
Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA
Summary of data from onsite and laboratory analyses of surface water and marsh porewater from South Florida Water Management District Water Conservation Areas, the Everglades, South Florida, March 1995
Summary of chemical data from onsite and laboratory analyses of groundwater samples from the surficial aquifer, Las Vegas, Nevada, April and August 1993 and September 1994
Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, the Suwannee River, Georgia, USA and by polycarboxylic acids
Meteorological Data near Rabbit Ears Pass, Colorado, U.S.A., 1984-2008
Peat porewater chloride concentration profiles in the Everglades during wet/dry cycles from January 1996 to June 1998: Field measurements and theoretical analysis
Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed
Transport of water, carbon, and sediment through the Yukon River Basin
Water and sediment quality in the Yukon River and its tributaries between Atlin, British Columbia, Canada, and Eagle, Alaska, USA, 2004
Water and Sediment Quality in the Yukon River Basin, Alaska, During Water Year 2005
Below are software products associated with this project.
PHREEQC Version 3
Although calcium carbonate reaction kinetics has important application in several areas of Earth Science, the mechanism of natural organic matter mediation of carbonate minerals growth and dissolution rates remains largely unknown. This project uses multiple approaches to study calcium carbonate formation and dissolution rates in surface water and groundwater systems.
Background

Project work on calcium carbonate reaction kinetics has important application in several areas of earth science, including water quality concerns and the global carbon budget. The mechanism of natural organic matter mediation of carbonate minerals growth and dissolution rates remains largely unknown. We use laboratory, field, and theoretical approaches to study calcium carbonate formation and dissolution rates in surface water and groundwater systems.
Important aspects of project research include characterization of the interaction of natural organic material with calcium carbonate surfaces during crystal growth and dissolution. We develop models to evaluate natural organic material influence on calcium carbonate crystal growth and dissolution kinetics. Other project activities focus on the development and verification of methods to characterize natural organic matter-metal ion speciation.
Project staff sample surface and ground water for chemical and isotopic composition related to calcium carbonate formation and dissolution. We use geochemical mass balance calculations to identify possible calcium carbonate formation and dissolution reactions in a range of surface and ground water settings. Project staff also monitor calcium carbonate crystal growth and dissolution in conjunction with tools developed for dating young groundwaters.
Our project uses techniques of low-temperature geochemistry to interpret and characterize chemical processes, such as precipitation of calcium carbonate in surface lake water (see photos below), occurring in surface water and ground water. We study metal binding by dissolved organic matter and crystal growth and dissolution reaction rate mediation by dissolved constituents because metal ion speciation and mineral formation rates influence water quality and carbon storage. Metal ion complexation with organic matter mediates metal ion reactivity in surface water and ground water -- metal ion speciation controls metal ion chemical and biogeochemical reactivity and bioavailability.
We determine equilibrium metal species distributions in surface and ground water containing organic matter, and characterize crystal growth and dissolution rates in surface and ground water containing organic material.
Project Interests
- Calcium carbonate nucleation and growth in surface and groundwater
- Calcium carbonate formation and dissolution in arid soils at the Amargosa Desert Research Site located near Beatty, Nevada.
Pyramid Lake Research






Aqueous Crystal Growth and Dissolution Kinetics of Calcium Carbonate Minerals at the Amarigosa Desert Research Site, Nevada
Below are publications associated with this project.
Calcite growth rate inhibition by low molecular weight polycarboxylate ions: Chapter 2
Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation
Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA
Summary of data from onsite and laboratory analyses of surface water and marsh porewater from South Florida Water Management District Water Conservation Areas, the Everglades, South Florida, March 1995
Summary of chemical data from onsite and laboratory analyses of groundwater samples from the surficial aquifer, Las Vegas, Nevada, April and August 1993 and September 1994
Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, the Suwannee River, Georgia, USA and by polycarboxylic acids
Meteorological Data near Rabbit Ears Pass, Colorado, U.S.A., 1984-2008
Peat porewater chloride concentration profiles in the Everglades during wet/dry cycles from January 1996 to June 1998: Field measurements and theoretical analysis
Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed
Transport of water, carbon, and sediment through the Yukon River Basin
Water and sediment quality in the Yukon River and its tributaries between Atlin, British Columbia, Canada, and Eagle, Alaska, USA, 2004
Water and Sediment Quality in the Yukon River Basin, Alaska, During Water Year 2005
Below are software products associated with this project.